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Abstract

A metric space (X, d) is said to be δ-hyperbolic if d(x, y)+d(z, w) is at most max(d(x, z)+d(y, w), d(x,w)+
d(y, z)) by 2δ. A geodesic space is δ-slim if every geodesic triangle ∆(x, y, z) is δ-slim. It is well-established
that the notions of δ-slimness, δ-hyperbolicity, δ-thinness and similar concepts are equivalent up to a
constant factor. In this paper, we investigate these properties under an average-case framework and
reveal a surprising discrepancy: while Eδ-slimness implies Eδ-hyperbolicity, the converse does not hold.
Furthermore, similar asymmetries emerge for other definitions when comparing average-case and worst-case
formulations of hyperbolicity. We exploit these differences to analyze the random Gaussian distribution
in Euclidean space, random d-regular graph, and the random Erdős-Rényi graph model, illustrating the
implications of these average-case deviations.

1 Introduction
There are two recent lines of work that we unite in this paper. One of them is in the realm of probability
and statistical mechanics. The second is in the realm of more practical data analysis or geometric machine
learning. First, Chatterjee and Sloman [6] introduce the notion of average or expected Gromov hyperbolicity
in the context of the Parisi ansatz and Ising models. Their main result is that if a metric space has small
hyperbolicity on average (i.e., it is tree-like on average), then it can be approximately embedded in a tree
with low distortion.

Simultaneously, there has been a resurgence in computing Gromov hyperbolicity values with the burgeoning
interest in geometric graph neural networks. There are many proposals to improve the efficacy of graph
neural nets by discovering the appropriate geometry and then embedding a data set comprised of a graph
and associated node and/or edge features in that geometry. A natural geometry to use is hyperbolic space;
thus, the necessity to determine just how hyperbolic a given graph data set is.

The desire for methods to determine the “geometry of a data set” necessitate appropriate hyperbolicity
measures that are adapted to finite and discrete structures. Furthermore, measures of hyperbolicity that
are “worst case” are often too pessimistic for finite discrete data. As a result, Gilbert and Yim [18] adapted
Chatterjee and Sloman’s notion of average hyperbolicity for finite data structures and developed an algorithm
for fitting tree-like on average data approximately into trees with low average distortion.

While Gromov hyperbolicity is just one measure of hyperbolicity for metric spaces, there are a number
of different definitions that capture different geometric properties: slimness, thinness, and size of inscribed
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Models (Usual) hyperbolicity Average δfp Average ζslim Average ηminsize

Gn (Section 3) Θ(
√
n) o(1) Θ(

√
n) Θ(

√
n)

HM,n (Section 3) Θ(M) o(1) ↗ M o(1)
RRG(n, d)(d ≥ 3) (Section 4) Θ(log n) o(ω(n)) Θ(log n) Θ(log n)
ER(n, λ

n )(λ ≥ 4.67) (Section 5) Θ(log n) o(log n) Θ(log n) Θ(log n)

Table 1: The hyperbolicity constants on some graph models, and how it breaks when it comes to the average.
Note that Gn has size O(n2.5) and HM,n has size O(n2).

circles. These definitions are all equivalent up to various constants. In this paper, we adapt these geometric
definitions to the finite discrete setting and define their average values. We do so in order to develop a
robust set of potential algorithmic tools for analyzing the geometric properties of finite discrete structures.
Surprisingly, we find that the equivalences in the usual worst case definition do not necessarily hold in the
average definition and the constants are also not the same!

Another key task in adapting and using these geometric tools is interpreting their results on finite data
sets. In particular, it is crucial to understand how a data set might masquerade as almost hyperbolic. For
example, do points drawn from a high dimensional Gaussian distribution exhibit low average hyperbolicity
(despite residing in Euclidean space)? In addition, we to use these tools on graph data sets and so it is
imperative to understand how they perform on families of random graphs.

δ-hyperbolic Eδfp ≤ C

Eζslim ≤ C
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Eτthin ≤ C

δ-slim

δ-thin

minsize ≤ δ

insize ≤ δ

×2

×2

×2

×2

×3

×4

×4

×2

×2

×2

×2 ×2

×1

×2

×2
×2

×2

×2

Figure 1: Overview of the results: various δ-hyperbolicity conditions are no longer equivalent when it comes
to average. The figure highlights what are the (non-)equivalences.

2 Preliminaries
We begin with the usual definitions of Gromov hyperbolicity. For all of our definitions, there is an important
distinction between a geodesic metric space and a discrete, combinatorial one. For graphs, this distinction is
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captured by treating edges in a graph as a curve in the metric space (upon which we can place intermediate
points) or as a discrete object which is not a part of the metric space and, hence, cannot be further subdivided
by intermediary points. This distinction causes some slight differences in definitions which we articulate as
well.

2.1 (Usual) definitions of hyperbolicity
Definition 2.1 (Gromov Hyperbolicity). Given a metric space (X, d), the four-point condition of the
quadruple x, y, z, w, fp is defined as

fp(x, y, z, w) :=
1

2
[max(P,Q,R)−med(P,Q,R)] ,

while
P := d(x, y) + d(z, w), Q := d(x, z) + d(y, w), R := d(x,w) + d(y, z).

(a) Given a metric space (X, d) and δ ≥ 0, if fp(x, y, z, w) ≤ δ holds for all x, y, z, w ∈ X, then we call
(X, d) δ-hyperbolic.

(b) Given a (connected) graph G = (V,E) and δ ≥ 0, if fp(x, y, z, w) ≤ δ holds for all x, y, z, w ∈ V , then
we will call G as δ-hyperbolic. Here, we use shortest-path metric as the metric d.

Note that the above hyperbolicity condition can also be defined using the Gromov product. The Gromov
product of two points x, y ∈ X with respect to a base point w ∈ X is defined as

⟨x, y⟩w :=
1

2
[d(x,w) + d(y, w)− d(x, y)].

Then, the four point condition can be expressed as

fp(x, y, z, w) = max
π perm

[min(⟨x, z⟩w, ⟨y, z⟩w)− ⟨x, y⟩w].

The restriction to a base point w in this definition does not cause a structural change in the definition of
Gromov hyperbolicity; we do not discuss here the necessary but trivial modification.

The more intuitive definition of hyperbolicity is that based upon the condition on a geodesic triangle.
Given three points x, y, z in a geodesic space X, we denote a geodesic triangle ∆(x, y, z) with vertices x, y, z
as the union of all three geodesic segments [x, y], [y, z], [z, x] (where [p, q] denotes a geodesic segment with
endpoints p and q).

Definition 2.2 (δ-slim). We start with, arguably the most familiar, the δ-slim definition.

(a) Given a geodesic metric space (X, d) and δ ≥ 0, a geodesic triangle ∆(x, y, z) for x, y, z ∈ X is δ-slim if
for any point w ∈ [x, y], the distance from w to [y, z] ∪ [z, x] is at most δ, and similarly for [y, z] and
[z, x]. We call (X, d) δ-slim if every geodesic triangle in X is δ-slim.

(b) Given a (connected) graph G = (V,E) and δ ≥ 0, a geodesic triangle ∆(x, y, z) for x, y, z ∈ V is δ-slim
if for any vertex w ∈ [x, y], the distance from w to [y, z] ∪ [z, x] is at most δ, and similarly for [y, z] and
[z, x]. We refer to G as δ-slim if every geodesic triangle in G is δ-slim.

Note for a graph there is a slight difference on the hyperbolicity constant. For example, a cycle with
length 3 C3 is 0-slim if we realize the space as a graph, as a geodesic segment only contains two endpoints.
However, it is not 0-slim if we consider the space as a geodesic metric space.

A similar but more restricted condition is the following δ-thin condition.
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Definition 2.3 (δ-thin). (a) Given a geodesic metric space (X, d) and δ ≥ 0, a geodesic triangle ∆(x, y, z)
for x, y, z ∈ X is δ-thin if d(x, v) = d(x,w) ≤ ⟨y, z⟩x, then d(v, w) ≤ δ holds for any points v ∈ [x, y]
and w ∈ [x, z], and similar conditions hold for y and z. We say (X, d) is δ-thin if every geodesic triangle
in X is δ-thin.

(b) Given a (connected) graph G = (V,E) and δ ≥ 0, a geodesic triangle ∆(x, y, z) for x, y, z ∈ X is δ-thin
if d(x, v) = d(x,w) ≤ ⟨y, z⟩x, then d(v, w) ≤ δ holds for any vertices v ∈ [x, y] and w ∈ [x, z], and
similar conditions hold for y and z. We say G is δ-thin if every geodesic triangle in X is δ-thin.

Let us denote slim(∆(x, y, z)) and thin(∆(x, y, z)) as the infimum of the δ-slim, thin, respectively, values
for all triangles; i.e.,

slim(∆(x, y, z)) := inf{δ ≥ 0 : ∆(x, y, z) is δ-slim}
thin(∆(x, y, z)) := inf{δ ≥ 0 : ∆(x, y, z) is δ-thin}.

Remark 2.4. By definition, a δ-thin triangle is always δ-slim. In other words, slim(∆(x, y, z)) ≤ thin(∆(x, y, z))
always holds. Consequently, a δ-thin space is always δ-slim.

≤ δ

δ

x

y z

x

y z

Figure 2: δ-slim and δ-thin triangle

Definition 2.5 (minsize, insize). The minsize of a geodesic triangle ∆(x, y, z) is defined as follows.

minsize(∆(x, y, z)) = inf
x′∈[y,z],y′∈[z,x],z′∈[x,y]

diam({x′, y′, z′})

In particular, pick myz ∈ [y, z] with d(x, y) + d(y,myz) = d(x, z) + d(z,myz) and mzx ∈ [z, x],mxy ∈ [x, y]
similarly. We call the diameter of {mxy,myz,mzx}, the insize of the triangle.

Remark 2.6. If given space is a graph G = (V,E), by convexity, it turns out that infx′,y′,z′ diam({x′, y′, z′})
occurs when x′, y′, z′ are all vertices (not a point on an edge). Therefore, we do not need to specifically define
the minsize of triangle on a graph. Note that even if mxy,myz,mzx may not be vertices in a graph (instead,
they are midpoint of an edge), we see that minsize ≤ insize.
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2.2 Equivalences amongst definitions of (usual) hyperbolicity
The following results show that all of the above hyperbolicity definitions are equivalent up to multiplication
by a small constant. In the next section, we see that this is no longer the case when we consider the average
definitions of hyperbolicity. As many of these results have appeared in the literature (and we are simply
compiling them in one place for completeness) or are straightforward consequences of the definitions, we
state the results here and for the proofs, either refer to the appropriate reference or show the result in the
Appendix.

Theorem 2.7. Given a geodesic metric space (X, d),

1. if it is δ-hyperbolic, then it is 3δ-slim [1].

2. if it is δ-thin, then it is δ-hyperbolic [5].

3. if it is δ-slim, then it is 4δ-thin [8]. The bound is tight.

4. if it is δ-slim, then it is 2δ-hyperbolic [14]. The bound is asymptotically tight.

5. if every geodesic triangle has minsize at most δ, then it has insize at most 3δ as well [8]. We note that
the original reference uses 4δ, but we can easily improve the bound.

6. if every geodesic triangle has insize at most δ, then it is 2δ-thin [8].

There are similar statements for discrete graphs. Proofs are in the Appendix.

Theorem 2.8. Given a graph G = (V,E),

1. if it is δ-hyperbolic, then it is 3δ + 1
2 -slim.

2. if it is δ-thin, then it is δ + 1
2 -hyperbolic.

3. if it is δ-slim, then it is 2δ + 1
2 -hyperbolic.

4. if it is δ-slim, then it is 4δ-thin.

We conclude with the definitions of hyperbolicity of a geodesic metric space.

Definition 2.9. Given a geodesic space or graph X, denote

hyp(X) := inf{δ : X is δ-hyperbolic} = sup{fp(x, y, z, w)}

slim(X) := inf{δ : X is δ-slim} = sup{slim(∆(x, y, z))}
thin(X) := inf{δ : X is δ-thin} = sup{thin(∆(x, y, z))}

insize(X) := sup{insize(∆) : ∆ geodesic triangle} = sup{insize(∆(x, y, z))}
minsize(X) := sup{minsize(∆) : ∆ geodesic triangle} = sup{minsize(∆(x, y, z))}

3 Average definitions of hyperbolicity
In this section, we explicate the average version of each of the hyperbolicity definitions from the previous
section. The idea underlying the average notions is that we select some number of points at random from
a space (X, d) or a graph G = (V,E) and compute various geometric quantities. All of these definitions
suppose that we select the points independently and identically distributed according to a distribution which
we leave unspecified. We do, however, assume, that the distribution is non-trivial on all points in the space
(or vertices of the graph).
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3.1 Definitions
Definition 3.1. We define the average hyperbolicity on (X, d) as follows

Eδhyp(X) := Ex,y,z,w iid fp(x, y, z, w).

We define the slimness of a geodesic triangle and its average similarly.
For graphs, we must be a bit more careful. It might be the case that the geodesic path between two

vertices x, y is not unique (i.e., there may be several shortest paths between two vertices), thereby making it
difficult to define uniquely a geodesic triangle amongst three vertices x, y, z. In this case, we randomly and
uniformly choose one segment amongst all shortest paths between x, y to constitute a segment in ∆(x, y, z).
To be more precise, suppose there are σx,y shortest paths between x and y. Then, we choose one path
amongst them to form [x, y] ∈ ∆(x, y, z) with uniform probability 1

σx,y
, and similarly for [y, z] and [z, x].

Definition 3.2. We use the following notation to define the corresponding average hyperbolicity values on
three vertices x, y, z:

1. ζ(x, y, z) := E slim(∆(x, y, z))

2. τ(x, y, z) := E thin(∆(x, y, z))

3. ι(x, y, z) := E insize(∆(x, y, z))

4. η(x, y, z) := Eminsize(∆(x, y, z))

For example, if the geodesic triangle on x, y, z is unique, then ζ(x, y, z) is the slimness of the triangle
itself.

Definition 3.3. We define the average hyperbolicity values on (X, d) as:

1. Eζslim(X) := Ex,y,ziidζ(x, y, z)

2. Eτthin(X) := Ex,y,ziidτ(x, y, z)

3. Eιinsize(X) := Ex,y,ziidι(x, y, z)

4. Eηminsize(X) := Ex,y,ziidη(x, y, z)

Remark 3.4. For geodetic graphs, the shortest path between two vertices x and y is always unique (See, for
example, [12]). Therefore, ζ(x, y, z) = slim(∆(x, y, z)) always holds (and so on).

3.2 Equivalences: lower and upper bounds
Given the equivalences amongst the usual definitions of hyperbolicity in Section 2.2, one might expect that
the average definitions of hyperbolicity also enjoy similar equivalences. Surprisingly, this is not necessarily
the case. There are some definitions of average hyperbolicity that are equivalent and there are some that are
not. In this subsection, we detail the equivalences, exhibiting upper and lower bounds amongst the equivalent
definitions. Because the non-equivalences and the examples that witness them are more compelling and
suprising, we delay their presentation until Section 4

We begin with a simple lemma that relates the slimness or minsize of a geodesic triangle with its thinness
or insize, respectively.

Lemma 3.5. Given a geodesic space (X, d) or a graph G = (V,E),
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1. If a geodesic triangle ∆(x, y, z) is δ-slim, then it is 4δ-thin (both as a geodesic space, or as a graph).

2. If a geodesic triangle ∆(x, y, z) has minsize δ, then it has insize less than or equal to 3δ (both as a
geodesic space, or as a graph).

Proof. We follow the proof of [8] and extend it slightly to the case when the geodesic triangle is in a
graph. Given a geodesic triangle ∆(x, y, z) with slimness δ, suppose there exists u ∈ [x, z], v ∈ [x, y] with
d(u, x) = d(v, x) ≤ ⟨y, z⟩x and d(u, v) > 4δ. Then,

d(u, [x, y]) = min(d(u, [x, v]), d(u, [v, y])) ≥ ⟨x, v⟩u, ⟨v, y⟩u,

where 2⟨x, v⟩u = d(x, u) + d(v, u) − d(x, v) = d(v, u) > 4δ and 2⟨v, y⟩u = d(v, u) + d(y, u) − d(v, y) =
d(v, u) + d(y, u) − (d(x, y) − d(x, v)) = d(v, u) + (d(y, u) + d(x, u) − d(x, y)) ≥ d(v, u) > 4δ. Therefore,
d(u, [x, y]) > 2δ holds.

Now, pick py ∈ [x, u] with d(py, u) = δ. Even in the discrete graph case, we can choose such a point since
δ is integer. Then we have d(py, [x, y]) ≥ d(u, [x, y])− d(u, py) > δ and there should be q ∈ [y, z] such that
d(py, q) ≤ δ. On the other hand,

d(py, [y, z]) ≥ d(x, [y, z])− d(x, py) ≥ ⟨y, z⟩x − d(x, py)

= d(my, x)− d(x, py) = d(py,my) = d(py, u) + d(u,my) = δ + d(u,my).

Therefore, u = my, v = mz and d(py, [y, z]) = δ. Also,

d(py, [y, z]) = min(d(py, [mx, z]), d(py, [y,mx])) ≥ min(⟨mx, z⟩py , ⟨y,mx⟩py ),

where 2⟨mx, z⟩py = d(mx, py) + d(z, py)− d(mx, z) = δ + d(py,mx) and 2⟨y,mx⟩py = d(y, py) + d(mx, py)−
d(y,mx) ≥ (d(x, y) − d(x, py)) + d(py,mx) − d(mz, y) = d(x,mz) + d(py,mx) − d(x, py) = δ + d(py,mx).
Therefore,

2δ ≥ 2d(py, [y, z]) ≥ 2min(d(py, [mx, z]), d(py, [y,mx])) ≥ δ + d(py,mx) ⇒ d(py,mx) ≤ δ.

Similarly, pick pz ∈ [x,mz] with d(pz,mz) = δ. Then we have d(pz,mx) ≤ δ. This shows

d(my,mz) ≤ d(my, py) + d(py,mx) + d(mx, pz) + d(pz,mz) ≤ 4δ,

a contradiction. This completes the proof of part 1 of the Lemma.
For the second part of the Lemma, we modify the proof from [8] slightly. Given a geodesic triangle

∆(x, y, z), pick px, py, pz in [y, z], [z, x], [x, y] with diameter δ and let mx,my,mz be the points of the inscribed
triple. We will show that d(mx,my) ≤ 3δ. There are three cases to analyze:

1. px ∈ [mx, z] and py /∈ [my, z]: Then we see that d(py,my)+d(mx, px) = d(py, z)−d(px, z) ≤ d(px, py) ≤
δ. Therefore,

d(mx,my) ≤ d(mx, px) + d(px, py) + d(py,my) ≤ δ + δ = 2δ.

2. px /∈ [mx, z] and py ∈ [my, z]: One can similarly show that d(mx,my) ≤ 2δ as well.

3. px ∈ [mx, z] and py ∈ [my, z]: We see that pz ∈ [x,mz] or pz ∈ [mz, y] holds. Without loss of generality,
assume that the former is true. Then

d(py,my) + d(mz, pz) = d(py, x)− d(x, pz) ≤ d(py, pz) ≤ δ,

and
d(mx, px)− d(mz, pz) = d(y, px)− d(y, pz) ≤ d(px, pz) ≤ δ.

Therefore, d(mx, px) + d(py,my) ≤ 2δ and d(mx,my) ≤ d(mx, px) + d(px, py) + d(py,my) ≤ 3δ.
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4. px /∈ [mx, z] and py /∈ [my, z]: Again, without loss of generality, assume pz ∈ [x,mz]. Then

d(px,mx) + d(mz, pz) = d(pz, y)− d(y, px) ≤ d(px, pz) ≤ δ,

and
d(my, py)− d(mz, pz) = d(x, pz)− d(x, py) ≤ d(py, pz) ≤ δ.

Therefore, d(mx, px) + d(py,my) ≤ 2δ and d(mx,my) ≤ d(mx, px) + d(px, py) + d(py,my) ≤ 3δ.

The above calculations cover every case and show d(mx,my), d(my,mz), d(mz,mx) ≤ 3δ as desired for part 2
of the Lemma.

The graph in Figure 3 shows that this inequality is tight.

x1

y1 z1

x2

y2 z2

Figure 3: The left geodesic triangle is 1-slim, but 4-thin. The right geodesic triangle has minsize 1, but its
insize is 3. Therefore we see that bounds on 3.5 are tight and cannot be improved.

Corollary 3.6. For a geodesic space or a graph X,

1. Eζslim(X) ≤ Eτthin(X) ≤ 4Eζslim(X).

2. Eηminsize(X) ≤ Eιinsize(X) ≤ 3Eηminsize(X).

3. Eηminsize(X) ≤ Eιinsize(X) ≤ Eτthin(X)(+1) (+1 is only for the case of a discrete graph).

3.3 Slim/thin triangles, on average, imply hyperbolicity, on average
First, we begin with the proposition that the average four-point hyperbolicity condition is implied by the
other (average) conditions, as we expect from the usual definitions. The main idea of the proof is to follow
the proof details from [14] and [5] and simply take expectations. For a discrete graph, however, we must
make suitable, if straightforward modifications. In all cases, we assume that we draw points at random from
a non-degenerate distribution.

Theorem 3.7. Given a geodesic space (X, d),

1. Eδhyp(X) ≤ 2Eζslim(X) holds.
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2. Eδhyp(X) ≤ Eιinsize(X) ≤ Eτthin(X) holds.

3. Eδhyp(X) ≤ 2Eηminsize(X) ≤ 2Eιinsize(X) holds.

Given a (connected) graph G = (V,E),

1. Eδhyp(G) ≤ 2Eζslim(G) + 1
2 holds.

2. Eδhyp(G) ≤ Eτthin(G) + 1
2 holds.

3. Eδhyp(G) ≤ 2Eηminsize(G) ≤ 2Eιinsize(G) holds.

Proof. First, assume that (X, d) is a geodesic space. The overall strategy is as follows. First, randomly sample
x, y, z and w. Next, we again randomly sample geodesic paths between all pairs of those points, in order to
constitute geodesic triangles ∆(x, y, z),∆(x, y, w),∆(x, z, w), and ∆(y, z, w). Then, we bound δfp(x, y, z, w)
in terms of some constants (such as slimness, minsize, etc.) over these triangles. Finally, take the expectation
to conclude the proof.

1. We will show that

δfp(x, y, z, w) ≤
1

2
[ζ(x, y, z) + ζ(x, y, w) + ζ(x, z, w) + ζ(y, z, w)] .

Without loss of generality, assume d(x, y) + d(z, w) ≥ max(d(x, z) + d(y, w), d(x,w) + d(y, z)). Pick
v ∈ [x, y] such that d(x, z) − d(x, v) = d(y, z) − d(y, v) = ⟨x, y⟩z. Then we have d(x, y) + d(z, t) ≥
d(x, z) + d(y, t) = d(x, t) + d(y, z). Next, by assumption, there exists t ∈ [x,w] ∪ [y, w] such that
d(w, t) ≤ slim(∆(x, y, w)). wlog assume t ∈ [x,w]. Then we have

d(x, y) + d(w, v) = d(x, v) + d(v, y) + d(w, v) ≤ (d(x, t) + d(t, v)) + d(y, v) + (d(t, v) + d(t, w))

≤ d(x,w) + d(y, v) + 2 slim(∆(x, y, w)).

Similarly, one can show (because d(y, v) + d(x, z) = d(x, v) + d(y, z),)

d(x, y) + d(z, v) ≤ d(y, v) + d(x, z) + 2 slim(∆(x, y, z)) = d(x, v) + d(y, z) + 2 slim(∆(x, y, z)).

This shows that

d(x, y) + d(z, w) ≤ (d(x, y) + d(z, v)) + (d(x, y) + d(w, v))− d(x, y)

≤ (d(x, v) + d(y, z) + 2 slim(∆(x, y, z))) + (d(x,w) + d(y, v) + 2 slim(∆(x, y, w)))− d(x, y)

= d(y, z) + d(x,w) + 2(slim(∆(x, y, z)) + slim(∆(x, y, w))),

which shows that fp(x, y, z, w) ≤ slim(∆(x, y, z)) + slim(∆(x, y, w)). Taking the expectation yields
fp(x, y, z, w) ≤ ζ(x, y, z) + ζ(x, y, w).

We can repeat the argument above by suitably choosing taking v ∈ [z, w]. Then we have fp(x, y, z, w) ≤
ζ(z, w, x) + ζ(z, w, y) and leveraging the two inequalities proves the claim. The statement comes from
taking the expectation (over the i.i.d. samples x, y, z, w).

2. Similarly, we will show

δfp(x, y, z, w) ≤
1

4
[ι(x, y, z) + ι(x, y, w) + ι(x, z, w) + ι(y, z, w)] .
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Without loss of generality, assume d(x, z) + d(y, w) ≥ d(x,w) + d(y, z) ≥ d(x, y) + d(z, w). Pick
x′ ∈ [x,w], y′ ∈ [y, w] such that d(x′, w) = d(y′, w) = ⟨x, y⟩w and y′′ ∈ [y, w], z′ ∈ [z, w] such that
d(y′′, w) = d(z′, w) = ⟨y, z⟩w. By assumption, we have d(y′, w) ≥ d(y′′, w). Then

d(x, z) ≤ d(x, x′) + d(x′, y′) + d(y′, y′′) + d(y′′, z′) + d(z′, z)

≤ d(x, x′) + insize(∆(x, y, w)) + d(y′, y′′) + insize(∆(y, z, w)) + d(z′, z)

= ⟨y, w⟩x + (⟨x, y⟩w − ⟨y, z⟩w) + ⟨y, w⟩z + insize(∆(x, y, w)) + insize(∆(y, z, w))

= d(x,w) + d(y, z)− d(y, w) + insize(∆(x, y, w)) + insize(∆(y, z, w)),

which immediately shows that δfp(x, y, z, w) ≤ 1
2 [insize(∆(x, y, w)) + insize(∆(y, z, w))]. Taking the

expectation yields δfp(x, y, z, w) ≤ 1
2 [ι(x, y, w) + ι(y, z, w)]. Again, we repeat the argument on [x, z]

and achieve δfp(x, y, z, w) ≤ 1
2 [ι(x, y, z) + ι(x, z, w)], which completes the proof.

3. We will show
δfp(x, y, z, w) ≤

1

2
[η(x, y, z) + η(x, y, w) + η(x, z, w) + η(y, z, w)] .

Again without loss of generality, assume d(x, z) + d(y, w) ≥ max(d(x, y) + d(z, w), d(x,w) + d(y, z)).
By assumption, pick px ∈ [y, z], py ∈ [z, x], pz ∈ [x, y] and qx ∈ [z, w], qz ∈ [w, x], qw ∈ [x, z] so that
diam({px, py, pz}) = minsize(∆(x, y, z)) and diam({qx, qy, qz}) = minsize(∆(x, z, w)). WLOG assume
d(x, py) ≤ d(x, qw). Then

d(y, w) ≤ d(y, px) + d(px, py) + d(py, qw) + d(qw, qz) + d(qz, w)

and
d(x, z) + d(py, qw) = d(x, qw) + d(py, z) ≤ d(x, qz) + d(qz, qw) + d(py, px) + d(px, z),

which shows

d(y, w) + d(x, z) ≤ d(y, px) + d(px, z) + d(x, qz) + d(qz, w) + 2(d(px, py) + d(qw, qz))

≤ d(y, z) + d(x,w) + 2(minsize(∆(x, y, z)) + minsize(∆(x, z, w))).

Hence, δfp(x, y, z, w) ≤ η(x, y, z) + η(x, z, w) holds, and repeating the argument completes the proof.

On a graph G = (V,E), we need to modify the proof slightly as follows.

1. It may be the case that we cannot explicitly pick v ∈ [x, y] with the desired identity, if the corresponding
Gromov product is a half-integer. Instead, we will assert |(d(x, z)− d(x, v))− (d(y, z)− d(y, v))| ≤ 1
and the constant 1/2 comes from the fact that two distance sum may differ by at most 1. Still, we are
able to show δfp(x, y, z, w) ≤ slim(∆(x, y, z)) + slim(∆(x, y, w)) + 1

2 .

2. (Note that for this proof we will use the thinness condition instead.) Here, we will choose d(x′, w) =
d(y′, w) = ⌊⟨x, y⟩w⌋ and d(y′′, w) = d(z′, w) = ⌊⟨y, z⟩w⌋. Then, by the thinness condition, we bound
d(x′, y′) ≤ thin(∆(x, y, w)) and d(y′′, z′) ≤ thin(∆(y, z, w)) and show

δfp(x, y, z, w) ≤
1

2

[
insize(∆(x, y, w)) + insize(∆(y, z, w)) +

1

2

]
.

3. Finally, note that by the definition of minsize, we do not need to pick some additional nodes differently
simply because we are in the discrete graph setting when it comes to the minsize. Therefore, Eδhyp(G) ≤
2Eηminsize(G) ≤ 2Eιinsize(G) still holds.
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Remark 3.8. The reader might wonder if we define ζ (and other constants) differently, how do our
equivalences change? For example, we could define ζ(x, y, z) as the infimum (i.e., the best case) among all
slimnesses over possible ∆(x, y, z). In this case, unfortunately, the desired equivalence inequalities do not hold.
For example, if we consider the 4-cycle C4, then we can always pick the geodesic triangle so that its slimness
is always zero. The graph, however, is not a tree (far from it) and it defies intuition that its hyperbolicity is
zero.

4 Non-equivalences
In this section, we detail the examples that demonstrate the non-equivalences of our definitions; that is,
definition A does not imply defiition B up to multiplication by a (small) constant. . These results are
suprising given the equivalences amongst all of the usual definitions of hyperbolicity. As there are a number
of cases to examine, we break them up into subsections. In each subsection, we provide families of examples
that illustrate the non-equivalences.

4.1 Average hyperbolicity does not imply average slimness
We answer, in the negative, whether hyperbolicity on average implies that triangles are slim/thin on average.
We witness a family of graphs in which the answer to this question is no, average hyperboliticy does not
necessarily imply thin or slim triangles on average.

ai
bijk

aj

d(ai, aj) = 2⌊
√
n⌋ + 1

Figure 4: This figure shows the construction of the family of graphs Gn in which average hyperbolicity does
not necessarily imply thin or slim triangles on average.

We construct a family of graphs {Gn} for n ≥ 3 as follows. Denote m := 2⌊
√
n⌋+ 1.

• V (Gn) = {ai|1 ≤ i ≤ n} ∪ {bijk|1 ≤ i < j ≤ n and 1 ≤ k ≤ m}.

• For any 1 ≤ i < j ≤ n, connect ai − bij1 − bij2 − · · · − bijm − aj .

Note that |V (Gn)| = O(n2.5). We see that this graph family essentially has a gap between the average
hyperbolicity and the average slimness.

Theorem 4.1. The family of graphs Gn satisfies

1. Eδhyp(Gn) → 0.

11



2. Eζslim(Gn),Eηminsize(Gn) → ∞.

Proof. First, we show that Eδhyp(Gn) → 0. We randomly choose four points x, y, z, w and consider the
following generic configuration:

1. None of the four points are the vertices ai for some i. This occurs with probability 1−O(n−1.5).

2. The point x lies between [ap(x), aq(x)] for some p(x), q(x) ∈ [n], and say hx := d(x, ap(x)) < d(x, aq(x))
(therefore, p(x) < q(x) may not be true). Then with probability 1−O(n−1), all of the 8 points p(·), q(·)
for each of x, y, z, w are distinct.

Overall, the generic configuration occurs with probability 1−O(n−1). In this case, the geodesic between two
points is always unique and should pass ap. Therefore,

d(x, y) = d(x, ap(x)) + d(ap(x), ap(y)) + d(ap(y), y) = m+ hx + hy,

and the similar formula holds for all other pairwise distances. Hence,

d(x, y) + d(z, w) = d(x,w) + d(y, z) = d(x, z) + d(y, w) = 2m+ hx + hy + hz + hw,

so that δfp(x, y, z, w) = 0.
On the other hand, if the point configuration is not generic, then we bound δfp(x, y, z, w) by 1

2 diam(Gn),
which is 4⌊

√
n⌋+ 1 = 2m− 1. This implies that

Eδhyp(Gn) ≤ O( 1n ) · (2m− 1) = O( 1n ·
√
n) = o(1).

x y

z w

ap(x) ap(y)

ap(w)ap(z)

mhx

Figure 5: This figure shows the generic configuration for the four point condition in the construction of the
family Gn

For the next proposition, it is enough to check that Eζslim(Gn) → ∞. When we randomly sample three
points x, y, z in this setting, the generic configuration is as follows:

1. None of the three points are the vertices ai for some i. This occurs with probability 1−O(n−1.5).
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2. Again, the point x lies between [ap(x), aq(x)] for some p(x), q(x) ∈ [n], and say d(x, ap(x)) < d(x, aq(x)).
Then with probability 1−O(n−1), all 6 indices p(·), q(·) for each of x, y, z are distinct.

Hence, the generic configuration occurs with probability 1 − O(n−1). However, in this case, the geodesic
triangle ∆(x, y, z) is unique and ζ(x, y, z) = slim(∆(x, y, z)) = ⌊

√
n⌋ = m−1

2 . Therefore,

Eζslim(Gn) ≥ (1−O( 1n )) ·
m− 1

2
= Ω(

√
n).

4.2 Average slimness and average minsize are not necessarily equivalent
In this subsection, we show that the slimness and minsize conditions are not necessarily equivalent in the
average case. We have seen that slimness implies a bound on the minsize (and insize); this example indicates
that the δ-slim and δ-thin conditions are the most strongest conditions amongst the equivalent hyperbolicity
notions.

Fix a positive integer M . Then we construct a graph family {HM,n} for n ≥ 2 as follows:

• V (HM,n) consists of what we call junction nodes {c1, · · · , cn}, nodes {ai,s} for 1 ≤ i ≤ n, 1 ≤ s ≤ M ·n
and nodes {bi,j,k} for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ 2M and k = 1, 2.

• For any 1 ≤ i ≤ n− 1, there are two paths between ci and ci+1 with length 2M : ci − bi,1,1 − bi,2,1 −
· · · − bi,2M,1 − ci+1 (informally call these upward paths) and ci − bi,1,2 − bi,2,2 − · · · − bi,2M,2 − ci+1

(downward paths, respectively). There is an edge between ci and ai,s for any i, s.

Note that |V (HM,n)| = O(n2).

Theorem 4.2. Given any positive integer M , the graph family HM,n satisfies

1. Eζslim(HM,n) → M .

2. Eηminsize(HM,n) → 0.

Proof. Our approach is to observe which configuration is generic and to argue that it occurs with high
probability. Let us randomly sample x, y, z in V (HM,n) and consider the following generic configuration.

1. All points x, y, z are in the “cluster” {ai,s}, so that each is adjacent to ci(x), ci(y), ci(z), respectively.

2. |i(x)− i(y)|, |i(y)− i(z)|, |i(z)− i(x)| ≥ log2 n holds.

Note that first condition holds with probability at least 1−O(n−1). Conditional on that, we see that the
conditional distribution of i(x)s is uniform in [n]. Therefore, the second condition holds with (conditional)
probability at least 1 − O(log n/n). Thus, the generic configratuion occurs with probability at least 1 −
O(log n/n).

Now, consider a geodesic triangle ∆(x, y, z) in the generic configuration. Without loss of generality
assume i(x) < i(y) < i(z). Then we see that regardless of the choice of geodesic, [x, y], [y, z] and [z, x]
always passes ci(y). In fact, ci(y) actually becomes the Steiner node among these points. Therefore,
ηminsize(x, y, z) = minsize(∆(x, y, z)) = 0 if x, y, z are generic. On the other hand, it is easy to verify
that every geodesic triangle in HM,n has minsize at most 2M . Therefore,

Eηminsize(HM,n) ≤ O( logn
n ) · 2M = o(1),
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ci

ai,s

bi,k,1

bi,k,2

Figure 6: This figure depicts the graph family HM,n in which average slimnes and average minsize are not
equivalent.

as n → ∞.
Now we evaluate the slimness of the generic triangle ∆(x, y, z). This depends on the choice of geodesic; let

us consider [x, y] and [x, z] in ∆(x, y, z). When each geodesic runs from ci(x) to ci(y), if at least one of path
choices between two adjacent junction nodes differs (i.e., one goes upward and the other goes downward),
then the slimness of ∆(x, y, z) should be at least M , as the midpoint of each segment is distant from the
other segment with distance M . As we have assumed three indices differ by at least log2 n, this phenomenon
happens on at least 1− n−1 portion of the geodesic triangles ∆(x, y, z) so that

ζslim(x, y, z) ≥ (1− n−1) ·M.

Therefore,
Eζslim(HM,n) ≥ (1−O( logn

n )) · (1− 1
n )M → M,

as n → ∞. On the other hand, we can check that every geodesic triangle in HM,n has slimness at most M .
Therefore, Eζslim(HM,n) → M as desired.

4.3 Generic geodesic space examples
In this subsection, we consider generic geodesic spaces, rather than families of graphs per se, and find more
extreme examples.

Example 4.3. Consider a Gaussian N(0, Id√
d
) random variable in Rd. Note that Euclidean space is always

non hyperbolic and we cannot bound the hyperbolicity constant δ in any sense in this space. However, if
we sample points from a Gaussian distribution in Rd and compute the Gromov hyperbolicity constant for
these points (embedded in Rd, we see that as d → ∞, δfp → 0. This is the distribution of distances between
points d(x, y) converges to

√
2. The geodesic triangle in Rd, however, is nowhere slim (or thin), so that

ζslim, τthin, ηminsize, ιinsize →
√
2/2.

This example highlights an important phenomenon. The first is that when one is computing hyperbolicity
values numerically on finite data sets, it is important to be careful drawing conclusions. One’s data set
might be samples drawn from a Gaussian distribution in high dimensional Euclidean space and one might be
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tempted to conclude with a small Gromov hyperbolicity value, that the points are from a hyperbolic space
when, in fact, they are not.

Example 4.4. Another extreme example is a space equipped with a distribution concentrated on exactly 3
points uniformly, say a, b, c ∈ X. Then by definition, δfp(x, y, z, w) = 0 always, as there would be a duplicate
among four points. On the other hand, we see that Eζslim is 2/9 · ζslim(a, b, c), and the similar thing holds on
all other constants. This means that a single geodesic triangle can serve an example on the average case as
well. For example, consider the graph H such that ∆(x, y, z) has minsize(insize) 1 and slimness n/2. Equip
this graph with a distribution concentrated on x, y, z and we can see that the bound on minsize does not
imply the bound on slimness.

n

n

n n

n

n

Figure 7: A geodesic triangle which is fat (as its slimness is n/2), but still has its insize 1

5 Random models
In the previous section, we defined the average notions of hyperbolicity and presented several examples that
illustrate the discrepancy amongst the average definitions. This discrepancy does not exist for the usual
definitions of hyperbolicity. In this section, we show that those examples are, in fact, not special and are,
in fact, fairly generic. In particular, we show that on a variety of random graphs the average definitions of
hyperbolicity are not equivalent. The two families of random graphs we examine are random regular graphs
and Erdös-Renyi random graphs.

5.1 Random regular graph RRG(n, d)

In this section, we analyze the average hyperbolicity of the random regular graph model RRG(n, d) with
d ≥ 3. One might think that such graphs are not hyperbolic on average as [3] showed that the random
regular graph is not hyperbolic (according to the usual definitions) and, in fact, the hyperbolicity constant is
at least 1

2 logd−1 n− ω(n) with high probability. This value is large considering that any graph is trivially
1
2 diam(G)-hyperbolic and the diameter of a random regular graph is bounded by 1

2 logd−1 n+O(log log n)).
Furthermore, [16] investigated a technique to show these graphs are not hyperbolic using the observation
that hyperbolic graphs must admit traffic congestion (or have a “core”).

We demonstrate that despite these results for the usual definitions of hyperbolicity on random regular
graphs, there is an asymptotic gap between the average hyperbolicity and the average slimness. It is well-
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known that the random graph RRG(n, d) is connected with high probability (i.e., such event happens with
probability → 1), so that we condition on that.

First, we show that the average hyperbolicity is surprisingly bounded by o(ω(n)). This is because the
typical distance between two nodes is reasonably concentrated, so that the generic four point condition is not
a large enough multiple of the number of vertices. More precisely, we consider the distribution of shortest
path lengths (DSPL), the distribution of distance between two fixed points. Our result builds on the recent
analysis:

Lemma 5.1. [15] For fixed x1, x2, consider Ln := d(x1, x2) in Gn ∈ RRG(n, d). Then the variance of Ln,
Var(Ln), satisfies

Var(Ln) =
π2

6[log(d− 1)]2
+

1

12
+O

(
log n

n

)
. (1)

Theorem 5.2. Given Gn ∈ RRG(n, d) for d ≥ 3 and any growth function ω(n) → ∞,

E (E (δfp(Gn))) = o(ω(n)),

with high probability.

Proof. First, we observe that because our random graph model is homogeneous, for fixed x1, x2, x3, x4 ∈
V (Gn),

E (E(δfp(Gn))) = E fp(x1, x2, x3, x4)

(note that we condition Gn being connected). Let P = d(x1, x2) + d(x3, x4) and Q = d(x1, x3) + d(x2, x4).
By the definition of the distribution of the distance between two fixed points (in a random regular graph),
both d(x1, x2) and d(x3, x4) are distributed as Ln. Furthermore, even though d(x1, x2) and d(x3, x4) might
not be independent,

E[P ] = E[d(x1, x2) + d(x3, x4)] = 2E(Ln) and Var[P ] ≤ 4Var(Ln),

and similarly for E[Q] and
V ar[Q]. Therefore,

E fp(x1, x2, x3, x4) ≤ 1
2E|P −Q| ≤ 1

2 [E|P − 2E(Ln)|+ E|Q− 2E(Ln)|]

≤ 1
2

[
Var[P ]1/2 +Var[Q]1/2

]
≤ 2Var(Ln)

1/2.

Lemma 5.1 tells us that the right hand side of the above inequality is bounded above by Equation 1. Thus,
given any ω(n) → ∞,

P
(
E(δfp(Gn)) ≥ ω(n)

)
≤ 2Var(Ln)

1/2

ω(n)
→ 0.

We emphasize that we barely used the structure of quadruple of points and the four point condition to
obtain the previous result; the bound on the distance distribution itself already provides a bound on the
average Gromov hyperbolicity!

To prove the next theorem, we build upon the ideas from [16] and [9]to show that most geodesic triangles
(in a random regular graph) are, in fact, extremely fat!
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Theorem 5.3. There exists a constant Cd > 0, which only depends on d (for d ≥ 3), such that for
Gn ∈ RRG(n, d),

E (ζslim(Gn)) ,E (ηminsize(Gn)) ≥
1

2
logd−1 n− 3

2
logd−1 logd−1 n− Cd,

with high probability.

Corollary 5.4. For any ϵ > 0, with high probability, most geodesic triangles in Gn are δ-fat with

δ =
1

2
logd−1 n− (

3

2
+ ϵ) logd−1 logd−1 n.

To prove Theorem 5.3, we use the following sequence of Lemmas. Denote Γr(w) := {x ∈ V : d(x,w) = r}
and Nr(w) := {x ∈ V : d(x,w) ≤ r} for w ∈ V and any integer r ≥ 0.

Lemma 5.5. If G = (V,E) is a graph with maximal degree d ≥ 3, then

|Γr(x)| ≤ d(d− 1)r−1, |Nr(x)| <
d

d− 2
(d− 1)r

for all x ∈ V, r ≥ 0.

Proof. Given x ∈ V , consider a breadth first search tree on G with root vertex x for which |Γr(x)| is exactly
the number of nodes with level r. As every node except the root x has at most d− 1 children (and at most d
including x itself), |Γr+1(x)| ≤ (d− 1)|Γr(x)| ≤ d(d− 1)r can be shown inductively. The second part of the
Lemma can be shown by the calculation

|Nr(x)| =
∑
i≤r

|Γi(x)| ≤ 1 + d(1 + (d− 1) + · · ·+ (d− 1)r−1)

= 1 + d
(d− 1)r − 1

d− 2
<

d

d− 2
(d− 1)r.

In the next Lemma (from [16], we are interested in the following set of pairs of vertices, which is informally
referred as a traffic (and is also closely related to the betweenness centrality),

T (w) := {(x, y) ∈ V × V : there exists a geodesic [x, y] contains w} for w ∈ V.

Lemma 5.6. [16] Let G = (V,E) be a graph with diameter D. For w ∈ V and i ≥ 0, we have

T (w) ≤
∑

k+l≤D

|Γk(w)| · |Γl(w)|.

Proof. Given (x, y) ∈ T (w), it is clear that d(x,w) + d(w, y) = d(x, y) ≤ D. The number of (x, y) ∈ T (w)
conditioned on d(x,w) = k and d(y, w) = l is at most |Γk(w)| · |Γl(w)|. Therefore, the desired inequality
holds.

Lemma 5.7. Suppose Gn ∈ RRG(n, d) with d ≥ 3 has its diameter D. Then

|T (w)| < d2

(d− 2)2
(d− 1)D

holds for all w in V (Gn).
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Proof. By lemma 5.6, we see

|T (w)| ≤
∑

k+l≤D

|Γk(w)| · |Γl(w)|

≤
∑

k+l≤D

d2(d− 1)k+l−2

=
d2

(d− 1)2

∑
0≤t≤D

∑
k+l=t

(d− 1)t

≤ d2

(d− 1)2

∑
0≤t≤D

(D + 1− t) · (d− 1)t

=
d2

(d− 1)2

(
(d− 1)D+1 − 1

d− 2
+

(d− 1)D − 1

d− 2
+ · · ·+ d− 2

d− 2

)
<

d2

(d− 1)2

(
(d− 1)D+1 + (d− 1)D + · · ·+ 1

d− 2

)
=

d2

(d− 1)2
· (d− 1)D+2 − 1

(d− 2)2
<

d2

(d− 2)2
(d− 1)D.

It turns out that the bound provided by [16] is quite loose and can be improved. This improvement will be
used when we compute the second leading term in the bound on the sizes of the average geodesic triangle.

In the next Lemmas, we use the known bound on the diameter for a random regular graph.

Lemma 5.8. [4] There exists a constant Cd, only depends on d ≥ 3, such that diam(Gn) ≤ logd−1 n +
logd−1 logd−1 n+ Cd with high probability.

The next Lemma is an improvement upon that in [9].

Lemma 5.9. Let G = (U, V,E) be a bipartite graph. The edges of G are colored in such a way that so that
given a node x ∈ U ∪ V , the number of colors incident to x is at most t(x). (u is incident to a color c if u is
incident to an edge with color c). Then there exists a color that is used by at least

|E|2(∑
u∈U t(u)

) (∑
v∈V t(v)

)
edges in E.

Note that the above lemma immediately implies Lemma 3.2 in [9] (by letting |U | = |V | = n and t(x) ≤ t
for all nodes x). The reason we developed a new lemma is as follows. Instead of the universal bound on t
(which is related to the behavior of the diameter of random graphs), we are able to use the average bound on
t, which may be used to improve the bound later.

Proof. We provide the details of the proof in the Appendix.

Now we are ready to prove the main theorem.

Proof. First, we will prove the statement on the minsize. We begin with the sampling procedure below.

• For every pair (v, w), fix a geodesic segment between v and w (by randomly choosing one). For the rest
of the argument, we use only these segments when we consider a geodesic triangle ∆(x, y, z). These
choices constitute a path system.
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• Randomly choose a pivot point z ∈ V (Gn). Then evaluate minsize(∆(x, y, z)) for any x, y ∈ V (Gn).

It is easy to see that
E
∑

x,y∈V

minsize(∆(x, y, z)) = n2Eηminsize(Gn).

Consider a threshold δ ≥ 0 and construct the following bipartite graph H = (X,Y,E) with X = Y = V (Gn)
and

(x, y) ∈ E ⇔ minsize(∆(x, y, z)) ≤ δ.

We color each edge in (x, y) ∈ E with c(x, y) = pz ∈ [x, y], where {px, py, pz} realizes the minsize of geodesic
triangle. Then by assumption, d(pz, [x, z]), d(py, [y, z]) ≤ δ. We see that

• In any x ∈ X, the number of colors incident to x is at most |Nδ([x, z])| ≤ (d(x, z) + 1) ·N(δ), where
N(δ) is the universal bound on the size of δ-neighborhood. This is because for pz ∈ [x, y], there exists
px ∈ [x, z] such that pz ∈ Nδ(px) ⊂ Nδ([x, z]).

• Given any color c, the number of edges colored with c is at most |T (c)| where T (c) = {(x, y) ∈ V × V :
c ∈ [x, y]}, which is bounded by lemma.

By Lemma 5.9, we have

d2

(d− 2)2
(d− 1)D ≥ |T (c)| ≥ max

c∈C
|Ec| ≥

|E|2

(
∑

x∈V |Nδ(x, z)|)2
≥ |E|2

N(δ)2(n+
∑

x∈V d(x, z))2
.

We have N(δ) ≤ d
d−2 (d− 1)δ and

∑
x∈V d(x, z) ≤ n diam(Gn). This shows that given p := |E|/n2,

p ≤ 1

n

[
d2

(d− 2)2
(diam(Gn) + 1)(d− 1)t+

diam(Gn)
2

]
.

We note that p is the probability that our random geodesic triangle has the slimness at most t. Therefore, if
we take expectation, we have

P(minsize(∆(x, y, z)) ≤ t) ≤ 1

n

[
d2

(d− 2)2
(diam(Gn) + 1)(d− 1)t+

diam(Gn)
2

]

P(minsize(∆(x, y, z)) > t) ≥ 1− 1

n

[
d2

(d− 2)2
(diam(Gn) + 1)(d− 1)t+

diam(Gn)
2

]
.

Since diam(Gn) ≤ logd−1 n+ logd−1 logd−1 n+ Cd with high probability, this suggests that w.h.p.,

P(minsize(∆(x, y, z)) > t) ≥ 1− 1

n

[
d2(d− 1)Cd/2

(d− 2)2
(logd−1 n+ logd−1 logd−1 n+ (Cd + 1)) ·

√
n · logd−1 n · (d− 1)t

]
.
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Denote C1 := Cd + 1 and C2 := d2(d−1)Cd/2

(d−2)2 log(d−1) . Given S > 0 (which will be chosen later), we have

Eζminsize(Gn) =

∫ ∞

0

P(minsize(∆(x, y, z)) > t)dt ≥
∫ S

0

P(minsize(∆(x, y, z)) > t)dt

= S −
∫ S

0

1

n

[
log(d− 1)C2(logd−1 n+ logd−1 logd−1 n+ C1) ·

√
n · logd−1 n · (d− 1)t

]
= S − log(d− 1)C2

(logd−1 n+ logd−1 logd−1 n+ C1)(logd−1 n)
1/2

n1/2

∫ S

0

(d− 1)tdt

= S − log(d− 1)C2
(logd−1 n+ logd−1 logd−1 n+ C1)(logd−1 n)

1/2

n1/2

[
(d− 1)S − 1

log(d− 1)

]
> S − C2

(logd−1 n+ logd−1 logd−1 n+ C1)(logd−1 n)
1/2

n1/2
· (d− 1)S .

Plugging in S = 1
2 logd−1 n− 1

2 logd−1 logd−1 n− logd−1(logd−1 n+ logd−1 logd−1 n+ C1) yields

Eζminsize(Gn) > S − C2,

as desired. The theorem can be shown by observing that |S − 1
2 logd−1 n+ 3

2 logd−1 logd−1 n| = o(1).
For the slimness case, we need to choose a different value for c, given a slim triangle ∆(x, y, z). In this

case, we choose c ∈ [x, y] based on the following simple proposition.

Lemma 5.10. If slim(∆(x, y, z)) = δ, then there exists a vertex c ∈ [x, y] such that d(c, [x, z]), d(c, [y, z]) ≤
δ + 1.

Proof. Pick c ∈ [x, y] with d(c, [x, z]) > δ, which is the closest from x. If such c does not exist, then the case
is obvious. By the slimness, d(c, [y, z]) ≤ δ holds. Also, for c′ the adjacent vertex of c in [x, y] toward x,
d(c, [x, z]) ≤ d(c′, [x, z]) + 1 ≤ δ + 1 holds.

Once we have done that, we can repeat the exactly same argument up to an additional constant 1.

Remark 5.11. We improved lemmas used in [16] in order to achieve the second leading term − 3
2 logd−1 logd−1 n.

If we had directly used the original lemmas, we would obtain the bound − 5
2 logd−1 logd−1 n instead.

Intuitively, this suggests the following. It is easy to check that the slimness of any geodesic triangle
is bounded by 1

2 diam(G), which is about 1
2 logd−1 n + 1

2 logd−1 logd−1 n. On the other hand, we have
seen that most geodesic triangles in a random regular graph are fat so that the slimness is at least
about 1

2 logd−1 n − 3
2 logd−1 logd−1 n. Therefore the average behavior is somewhere between [ 12 logd−1 n −

3
2 logd−1 logd−1 n,

1
2 logd−1 n+ 1

2 logd−1 logd−1 n].

5.2 Erdős-Rényi graph ER(n, λ/n) with λ > 1

Finally, in this subsection, we consider the Erdős-Rényi random graph model ER(n, p). In order to ensure
that the graphs we study have a large connected component, we consider the supercritical case in which the
probability of an edge between any two of the n vertices is p = λ/n for some λ > 1. Following convention, we
consider the giant component of these graphs, which has size roughly γ(λ) · n. [11] showed that this sparse
random graph is not hyperbolic by constructing a single geodesic triangle which is forced to be fat. (In fact,
their result suggests that such triangle is Ω(log n)-fat, which is not explicitly stated in the original paper.)
We want something more in this average case!

Our main result is as follows.
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Theorem 5.12. Given Gn ∈ ER(n, λ/n) with λ ≥ 4.67, there exists f(λ) > 0 such that with high probability,

E (ζslim(Cmax)) ,E (ηminsize(Cmax)) ≥ f(λ) · log n,

where Cmax denotes the giant component of Gn.

Corollary 5.13. With high probability, a geodesic triangle in (the giant component Cmax of) Gn ∈ ER(n, λ/n)
is Ω(log n)-fat.

The corollary answers the question raised in [11] and shows that the Ω(log n)-fat triangle in the Erdős-Rényi
graph is typical.

Proof. The proof procedure is as follows. We use a similar method to that for the random regular graph case.
While those calculations were detailed, here, we omit the details and argue simply that the leading term is
O(log n).

1. First, given a point x, we want to bound the number of geodesics which contains the point x. Following
the arguments for Lemmas 5.6 and 5.7, what we need to do is to bound the size of neighborhood
|Γr(x)| and |Nr(x)| given r > 0. However, as the degree is not bounded, so that the upper bound is not
immediate. it is not clear. Hence we adapted the lemma stated from [7].

2. We also need to bound the diameter of our giant component. We use explicite results from [13]. The
condition λ ≥ 4.67 is required so that the diameter diam(Cmax) is not bigger than 2 log n/ log λ+O(1).

Lemma 5.14 (Bounds on the size of neighborhood). Given Gn ∈ ER(n, λ/n) with λ > 1,

|Γr(x)| ≤ (r + 1)2λr · log n

holds for all x ∈ V (Gn) and 0 ≤ r ≤ n, with high probability.

Proof. We provide the details of the proof in the Appendix for completeness.

Lemma 5.15 (Bounds on the diameter, [13]). Given λ > 1, let λ∗ < 1 satisfy λ∗e
−λ∗ = λe−λ (i.e., the

conjugate). Then there exists a constant Cλ that depends only on λ, such that for Gn ∈ ER(n, λ/n) and its
giant component Cmax,

diam(Cmax) ≤
(

1

log λ
+

2

log(1/λ∗)

)
log n+ Cλ

with high probability. Note that for λ ≥ 4.67, 2
log(1/λ∗)

< 1
log λ holds.

We are now ready to prove Theorem 5.12. Given λ ≥ 4.67, pick 0 < ϵ < 1 − 2 log λ
log(1/λ∗)

. With high
probability, diam(Cmax) ≤ (2− ϵ) logn

log λ + Cλ(=: Dλ) so that by Lemmas 5.6 and 5.14,

|T (w)| ≤
∑

k+l≤Dλ

|Γk(w)| · |Γl(w)|

≤
∑

k+l≤Dλ

(k + 1)2(l + 1)2λk+l(log n)2

≤ (log n)2
∑
t≤Dλ

∑
k+l=t

(k + 1)2(l + 1)2λt

=
(log n)2

30

∑
t≤Dλ

(t− 1)(t+ 1)(t+ 2)(t+ 3)(t+ 5)λt

≤ (log n)2(Dλ + 5)5

30

∑
t≤Dλ

λt <
(log n)2(Dλ + 5)5λDλ+1

λ− 1
,
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holds for all w ∈ Cmax. We see that, after substituting in the expression for Dlambda and simplifying, the
right hand side becomes O(n2−ϵ log7 n). In other words, there exists Aλ > 0 such that

|T (w)| ≤ Aλ · n2−ϵ log7 n,

for n sufficiently large.
Next, we use our previous proof technique again. This gives us that for p := P(minsize(∆(x, y, z)) ≤ t),

for a giant component Cmax with size γn, there exists a color c which is used at least

(p(γn)2)2

N(t)2(γn+
∑

x∈Cmax
d(x, z))2

≤ |T (c)| ≤ Aλ · n2−ϵ log7 n

times.
We simply use d(x, z) ≤ diam(Cmax) ≤ 2 logn

log λ −1 and N(t) ≤
∑

r≤t max |Γr(x)| ≤
∑

r≤t(r+1)2λr log n ≤
(t+ 1)3λt log n, so that

p = P(minsize(∆(x, y, z)) ≤ t) ≤ 2
√
Aλ

γ log λ
n−ϵ/2(log5.5 n) · (t+ 1)3λt,

1− p = P(minsize(∆(x, y, z)) > t) ≥ 1− 2
√
Aλ

γ log λ
n−ϵ/2(log5.5 n) · (t+ 1)3λt.

Now pick Sn > 0 such that
∫ Sn

0
(t + 1)3λtdt =

([
λt((t+1)3 log3 λ−3(t+1)2 log2 λ+6(t+1) log λ−6)

log4 λ

]t=Sn

t=0
=

)
nϵ/2

log5.5 n
.

It turns out that

Eζminsize(Cmax) =

∫ ∞

0

P(minsize(∆(x, y, z)) > t)dt ≥
∫ Sn

0

P(minsize(∆(x, y, z)) > t)dt ≥ Sn − 2
√
Aλ

γ log λ
.

It is easy to check that Sn ∼ (ϵ/2) · logn
log λ . Also, with high probability, γ converges to the final probability

γ(λ), which only depends on λ. Therefore, the right hand side of the inequality is bounded by Ω(log n) with
high probability, thus completing the proof.

The slimness case can be shown analogously.

As we have seen in random regular graph case, we again expect a gap between the (four point) hyperbolicity
and the slimness of the geodesic triangles. Although, we do not have a proof explicitly bounding the four
point condition, we instead include a simple proof that the gap exists.

Theorem 5.16. Given Gn ∈ ER(n, λ/n) with λ > 1 and its giant component Cmax, we have

E (δfp(Cmax)) = o(log n)

with high probability.

Proof. Fix Sλ > 1
log λ + 2

log(1/λ∗)
. Let B be the event such that

1. The giant component Cmax has size 0.99γ(λ) · n ≤ |Cmax| ≤ 1.01γ(λ) · n.

2. The diameter diam(Cmax) ≤ Sλ · log n.
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We see that P(B) → 1 as n → ∞. Let B1234 be the event that B occurs and x1, x2, x3, x4 all belong to the
giant component Cmax (for fixed vertices x1, x2, x3, x4). As the graph model is homogeneous, P(B1234) ≤
(1.01γ(λ)n)4

n4 P(B) = (1.01γ(λ))4P(B).
The expectation of average hyperbolicity conditioned on B is

E (Eδfp(Cmax) | B) = E

 1

|Cmax|4
∑

x,y,z,w∈Cmax

fp(x, y, z, w) | B


≤ 1

(0.99γ(λ)n)4
E

 ∑
x,y,z,w∈Cmax

fp(x, y, z, w) | B


=

1

(0.99γ(λ)n)4

∑
x,y,z,w

E (1(x, y, z, w ∈ Cmax) ∧ fp(x, y, z, w) | B)

=
1

(0.99γ(λ)n)4
n!

(n− 4)!
E (1(x1, x2, x3, x4 ∈ Cmax) ∧ fp(x1, x2, x3, x4) | B)

≤ 1

(0.99γ(λ))4
P(B1234)

P(B)
E (fp(x1, x2, x3, x4) | B1234)

≤ (1.01)4

(0.99)4
E (fp(x1, x2, x3, x4) | B1234) .

Now we use the result from [17]. It states that for fixed x1, x2,
d(x1,x2)
logn converges to 1

log λ in probability, while
conditioned on x1 and x2 belonging to the giant component Cmax. In other words, given any η > 0,

P(|d(x1, x2)− logλ n| > η logλ n | x1, x2 ∈ Cmax) → 0.

Fix η > 0. Let E be the event (conditional on B1234) such that there exists a pairwise distance among
x1, x2, x3, x4 outside of [(1 − η) logλ n, (1 + η) logλ n]. If E does not occur, then the four point condition
fp(x1, x2, x3, x4) is bounded by η logλ n. If E does occur, then we use fp(x1, x2, x3, x4) ≤ 1

2 diam(Cmax) ≤
1
2Sλ log n so that with high probability,

E fp(x1, x2, x3, x4 | B1234) = E (fp(x1, x2, x3, x4) | E)P(E | B1234) + E (fp(x1, x2, x3, x4) | Ec)P(Ec | B1234)

≤ Sλ

2
log n · P(E | B1234) + (η logλ n) · (1− P(E | B1234))

≤
(
η +

(
Sλ

2
− η

)
P(E | B1234)

)
· logλ n.

As P(E | B1234) → 0 as n → ∞, E fp(x1, x2, x3, x4 | B1234) < 1.01η logλ n for n sufficiently large.
Hence, for any fixed η > 0 and M > 0, E (Eδfp(Cmax) | B) ≤ (1.01)5

(0.99)4
η

2M logλ n < η
M logλ n holds for n

sufficiently large. Hence,

P(Eδfp(Cmax) ≥ η logλ n | B) ≤ E (Eδfp(Cmax) | B)

η logλ n
<

1

M
for n sufficiently large.

We conclude that Eδfp(Cmax) = o(log n) with high probability (using the fact that B occurs with high
probability).
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6 Discussion
Our analysis establishes important distinctions between the usual and the average case definitions of
hyperbolicity. We show that in contrast to the usual definitions, the average definitions are not all equivalent
up to a constant factor. Furthermore, the examples that exhibit these differences are themselves interesting
cases of random discrete structures and distributions of points in high dimensional Euclidean space that
might masquerade as points from a hyperbolic space if one is not astute in one’s measurements! There are a
number of open questions that arise as a result of our analysis.

6.1 Improving the gap between AvgHyp and AvgSlim (or AvgMinsize)
For the Erdös-Renyi random graph ER(n, λ/n) case, we establish that the average hyperbolicity (AvgHyp) is
bounded by o(log n), using the distribution of the shortest path lengths (DSPL). Importantly, this result does
not rely on any specific structural information about the quadruples of vertices, leaving room to address the
gaps amongst the average case definitions. Similarly, in the case of random regular graphs, one can compute
the variance of DSPL, which provides a bound on the average hyperbolicity, without using specific structural
information about quadruples of points.

We did, however, assume λ ≥ 4.67 to ensure that the graph’s diameter remains manageable. What
happens if λ > 1 but is much smaller, perhaps approaching 1? In such scenarios, can we still expect the
graph and its geodesic triangles to be Ω(log n)-fat? Or does it become truly tree-like instead? These are
questions that are valid, interesting future or follow-up work after our initial results.

6.2 “tree-likeness” of AvgSlim (or AvgMinsize)
We have seen that the average hyperbolicity can be used as a measure of how tree-like the space is [6, 18]. We
have demonstrated that, actually, the average hyperbolicity is the weakest one amongst the average measures!
In fact, the upper bound provided by [6] and [18] are both quite loose: the quantitative bound on results
of [6] is hard to track since they use the weighted Szemerédi regularity lemma, which is known to have a
gigantic bound. Also, it turns out that the O(n3) bound given by [18] is enormous in practice. This might
not be a coincidence, as we may have assumed too weak an average hyperbolicity bound. For example, given
a space or a graph where the average slimness is bounded, is there a good tree that fits the given distance
with smaller average distortion?

6.3 Expander graphs
This is an important open question. There are negative results for the usual definitions of hyperbolicity [2, 10]
but we do not know about the average definition. It’s possible (given the results in [9]) that there are some
families of expanders that are hyperbolic on average and possibly some that are not.
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7 Appendix

7.1 Proof of Lemma 5.9
We will first show the following lemma:

Lemma 7.1. Given a bipartite graph G = (U, V,E),√
|E| ≤

∑
(u,v)∈E,u∈U,v∈V

1√
deg(u) · deg(v)

.

Proof.

∑
(u,v)∈E,u∈U,v∈V

1√
deg(u) · deg(v)

=
∑
u∈U

1√
deg(u)

 ∑
v∈N(u)

1√
deg(v)


≥
∑
u∈U

1√
deg(u)

(
|N(u)| · 1√

Mu/|N(u)|

)
(Mu :=

∑
v∈N(u)

deg(v) ≤ |E|)

=
∑
u∈U

1√
deg(u)

· deg(u)
3/2

√
Mu

=
∑
u∈U

deg(u)√
Mu

≥
∑
u∈U

deg(u)√
|E|

=
√
|E|.

Now we will proceed the main proof of the Lemma. Let C denote the collection of colors and c(x, y)
denote the color of (x, y) ∈ E. Let Ec := {(x, y) ∈ E : c(x, y) = c}, Nc(x) := {y : (x, y) ∈ Ec}, and
degc(x) := |Nc(x)| for c ∈ C and x ∈ U ∪ V . Then by Cauchy-Schwarz inequality, ∑

(u,v)∈E,u∈U,v∈V
c=c(u,v)

1√
degc(u) · degc(v)


2

≤

 ∑
(u,v)∈E,u∈U,v∈V

c=c(u,v)

1

degc(u)


 ∑

(u,v)∈E,u∈U,v∈V
c=c(u,v)

1

degc(v)

 .

We see that∑
(u,v)∈E,u∈U,v∈V

c=c(u,v)

1

degc(u)
=
∑
u∈U

∑
v∈N(u),c=c(u,v)

1

degc(u)
=
∑
u∈U

∑
c∈C

Nc(u)̸=∅

∑
v∈Nc(u)

1

degc(u)
=
∑
u∈U

∑
c∈C

Nc(u)̸=∅

1 ≤
∑
u∈U

t(u),

and similarly, ∑
(u,v)∈E,u∈U,v∈V

c=c(u,v)

1

degc(v)
≤
∑
v∈V

t(v)

holds. On the other hand,∑
(u,v)∈E,u∈U,v∈V

c=c(u,v)

1√
degc(u) · degc(v)

=
∑
c∈C

∑
(u,v)∈Ec,u∈U,v∈V

1√
degc(u) · degc(v)

≥
∑
c∈C

√
|Ec|,
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by the previous lemma. This shows

∑
(u,v)∈E,u∈U,v∈V

c=c(u,v)

1√
|Ec|

=
∑
c∈C

√
|Ec| ≤

√√√√(∑
u∈U

t(u)

)
·

(∑
v∈V

t(v)

)
,

so that there exists (u, v) ∈ E with 1√
|Ec|

≤
√
(
∑

u∈U t(u))·(
∑

v∈V t(v))
|E| holds. Thus,

|Ec| ≥
|E|2(∑

u∈U t(u)
) (∑

v∈V t(v)
) ,

as desired.

7.2 Proof of Lemma 5.14
For fixed x, denote at := |Γt(x)| and bt := ⌊(t+ 1)2λt log n⌋. We will show the following:
Claim: Given 0 ≤ t ≤ n, as ≤ bs holds for all 0 ≤ s ≤ t with probability at least 1− t/n2λ.
Proof: We induct on t. For t = 0, 1 = a0 ≤ b0 = ⌊log n⌋, which is always true (if n ≥ 3). Now, suppose the
assertion holds on t = r. The following Chernoff type bound is well-known.

Lemma 7.2. Given a binomial distribution X ∼ Bin(n, p), we have

P(X ≥ np+ a) ≤ exp

(
− a2

2(np+ a/3)

)
∀t ≥ 0.

We use the fact that conditional on a0, a1, · · · , ar, the distribution of ar+1 is dominated by the distribution
of the number of boundary edges |∂Γr(x)|, which is binomial with parameters (n− |Nr(x)|) · ar ≤ nar and
p = λ/n. Suppose a0 ≤ b0, · · · , ar ≤ br. Then

P(ar+1 > br+1|a0, · · · , ar) = P(ar+1 > (r + 2)2λr+1 log n|a0, · · · , ar)

≤ P
(
Bin

(
nar,

λ

n

)
> (r + 2)2λr+1 log n

)
≤ P

(
Bin

(
nbr,

λ

n

)
> (r + 2)2λr+1 log n

)
(∵ ar ≤ br)

≤ exp

− (
(r + 2)2λr+1 log n− λbr

)2
2
(
λbr +

(r+2)2λr+1 logn−λbr
3

)


≤ exp

−((r + 2)2λr+1 log n− (r + 1)2λr+1 log n
)2

2
(

2(r+1)2λr+1 logn+(r+2)2λr+1 logn
3

)
 (∵ λbr ≤ (r + 1)2λr+1 log n)

= exp

[
−λr+1 log n · 3(4r

2 + 12r + 9)

2(3r2 + 8r + 6)

]
≤ exp

(
−2λr+1 log n

)
≤ 1

n2λ
.

By the induction hypothesis, we see that a0 ≤ b0, · · · , ar ≤ br holds with probability at least 1− r/n2λ and
conditional on that, the probability of ar+1 > br+1 is bounded by 1/n2λ. Therefore, a0 ≤ b0, · · · , ar+1 ≤ br+1

holds with probability at least 1− (r + 1)/n2λ which concludes the proof.
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Now, let B(x) be the bad event that |Γt(x)| > (t+ 1)2λt log n for some t. By the claim, P(B(x)) ≤ n1−2λ.
Therefore, for B := ∪xB(x),

P(B) ≤
∑
x

P(B(x)) ≤ n2−2λ = o(1),

as desired.
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